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A first order perturbation expansion is proposed using the Weeks—Chandler—Andersen choice
of the reference system for solutions of non-electrolytes formed by molecules with central type
of the interaction potential (involving soft repulsions). The Percus-Yevick approximation for
a mixture of additive hard spheres is used in the calculation of the functions of the reference
system. The method is applied to determine the excess thermodynamic functions AGE, AHE and
AVE of the argon—krypton system at 7= 115-8 K and the krypton—xenon system at T = 161-4 K.
The excess functions are compared with the Monte Carlo data and those following from the theory
of Barker and Henderson and the variational approach due to Mansoori and Canfield.

Recently, the perturbation methods have been applied successfully to determine the state and
thermodynamic behaviour of systems of non-electrolytes. A number of perturbation methods
have been proposed (e.g. ref.>?) of which for pure substances in particular proved useful the
approach of Barker and Henderson?, the Weeks—~Chandler-Anderson® (WCA) method and the
Verlet-Weis® method; the last being a modification of WCA method. Of these methods only the
Barker—Henderson® (BH) method and the Mansoori-Canfield” (V) variational approach were
extended to solutions. The Mansoori-Canfield method differs from BH in the way of determining
the representative hard spheres and some mathematical details. In addition to the exact and
versatile theories several approximative methods (e.g. the Snider—Hc:rringlon8 method) as well
as those suitable for a certain type of intermolecular pair potential (Boublik~Benson9) have been
proposed. These methods serve for their relative simplicity to estimate the thermodynamic func-
tions of mixtures without, however, enabling exact study of multicomponent system with an ar-
bitrary type of the intermolecular potential. WCA. approach will be now extended to multi-
component systems since, as has been shown by Verlet and Weis3, WCA choice of the reference
system, together with WCA approximation of the radial distribution function leads for the Len-
nard-Jones types of pair potential (involving soft repulsions) to so far the best agreement of the
computed values with the pseudo-experimental Monte Carlo results.

THEORETICAL

A basic relation in statistico-thermodynamic description of the behaviour of mixtures
by perturbation methods is the expression for the Helmholtz function. If the studied
system contains N, molecules type of A, Ny molecules of type B etc., and a t.tal
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of N molecules (N = Ny + Ny + ...) in a volume V at a temperature 7, the first
order perturbation expansion for the mixture takes the form

F F°  2mn [
LB 2y ) o) i
NKT  NKT kT%x’x’JW’(r)g’(r)r ' @

where F and F° stand for the configuration free energy of the studied and the re-
ference system respectively. k is the Boltzmann constant, § = (kT)", n the number
density (n = N/V), x; = N;/N the mole fraction of the component i. w;(r) and g{(r)
denote the perturbation interaction potential and the radial distribution function
of the reference system respectively both for a pair of molecules of i and j type with the
center-to-center distance equalling r. If u;;(r) is the pair potential of the studied
system and u{(r) and w;(r) are the reference and the perturbation potentials res-
pectively, then with WCA choice we have*:*

u(r) = u(r) — w(rfy) for r<ri; ul(r) =0, r>rf; (2a)

wil(r) = u (i), <l owiy() =uy(r), r> - (2b)

r}'} in the last equation stands for the intermolecular distance in the minimum of the
potential curve where u; j(r?j) = —g¢;;. For a reference system with a potential given
by Eq. (2a) the course of the radial distribution function is not known, and, con-
sequently, g?j(r) has to be expressed in an approximative manner. For pure substances
it has proved useful to put g%(r) = exp [ —pu’(r)] Y"(r). We shall therefore adopt
for mixtures analogously the relation

gi(r) = exp [—Buii(n)] Yii(r) - 3)
Function Y;i(r) = Y}i(v) is given by

Yifr) = exp [ 450, @

where the superscript hs indicates mixtures of hard spheres of diameter d;; of the
same composition {x;} as the studied and the reference system. Similarly as in the
czse of one-component system!® one can write for the free energy of the reference
multicomponent system the functional Taylor expansion in terms

of ¢(r)
() = exp [ pui(r)] ®)
about the potential of hard spheres, which for the i — j type pair we shall designate
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by @}5(r). With the aid of Eq. (3) one can derive for binary mixtures the relation

F° Ja S |

- nAnBJ Yap(r) [o2s(r) -+ @iu(r)] dr — % n2 J You(r) [ons(r) — ope(r)] dr + ...,
(6)

where the contribution of all terms higher than the first order is very small. If the
thermodynamic functions for mixtures of ‘“‘non-additive hard spheres” were known
with sufficient accuracy, all three integrals in the last equation could be put equal
zero. The free energy of the reference system would then equal — spare for higher

order terms — the free energy of the mixture of hard spheres of the diameter given
by the following equation

[ 79 i) = ot 0r = 0 o)

for all possible types of pairs. Since, however, only the data on “additive hard spheres”

are at our disposal, Eq. (7) can be used to determine only d;; for which after some
arrangement we get

J.m‘ Yii(r) exp [ Bu(r)] r2dr = Jm‘ Yi(r) r* dr. (8)
0 dn

The diameter of representative hard spheres of i % j pairs is given by the arithmetic
average

dij = (du + dy)f2. ©
In view of the definition of the reference system and the approximation in Eq. (3)
it is convenient to split the integration interval in Eq. (I) into two parts: (0 — r})
and (rf; — o)
F F° 2nn it °
= = Y XX g Y;(r) exp [—pud(r)] r* dr +
i et 5o e[ e -]
o0
+.[ wil) Vi) 2 dr}. (10)
l’lJ'

The second integral may be expressed with the aid of the Laplace transforms of func-
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tions zg4(z) (where z = r[d,;; for z > rfjfd;; g1 = Y;)),
Lz gi(2)} = Gifs) » (11)
and the inverse Laplace transforms of functions z wi(z) (where wii(r) = wy(r)fe;;)
L™z wii(2)} = Uys) - (12)
After substitution we get

F F° 2nn Tyt
— + = Y xxdie; 4 — Y;(2) exp [ —Bud(z)] 22 dz +
NkT = NkT kng: Y ’{ L fe) exp [ = pui)] = dz

+ [Wcij(s) U ds [,,,‘,‘,”

JOo J1

) ) ). (13)
This equation can be arranged using eq. (%) and (14)
uiy(z) = ui(2)fe;; = uii(z) + 1, (14)
to give
F F° 2mn

@ r1i*/dyy
Y e {J Giy(s) Uyj(s)ds ~J ul¥(z) Yij(z) 22 dz} + 8,
0

NKT NET KT & .
(13)

where
rig*/dyg ry;t/dyy
5 = 2mn Y xpedie; Y,(2) 22 dz — J Yii(z) exp [ —Bufy(z)] 22 dz}.
kT iF; 1 0

(16)

The free energy F° of the reference system can be expressed from Eg. (6) using
expressions for a mixture of hard spheres

F° Fbs N rag*dig bs ° 2
T = Vir + 21"1;;,- xixjdijf0 Yii(2) [of(z) — @ii(2)] 22 dz.  (17)

Substituting the last expression into Eq. (15) we get

F F"  2mn 3 {J‘“’
—_— = + == ) xpxdiies; Gis) Uyls) ds —
NkT NkT kT Zj I U PR

i 0 2
—J‘ uy(z) Yij(z) 2 dz} +4, (18)

1
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where

2nn ET\ (rutdu
4= ijx,-d%,-ei,-(l +m) f Yy(2) [03(z) — 03] 22 dz. (19)

kT i i3/ Jo

* The function Y;;(r) for a system of hard spheres is a monotonically decreasing function
on the interval (0 — r{;) with a maximum (a finite value) in the proximity of r = 0
(ref:''). To calculate the integrals in Eq. (§8) one can therefore approximate Y
by a first-order expansion in z at z = 1, i.e. we can write'?

Yi(z) = 4;; + Bijz, (20)

where the coefficients 4;; and B;; are determined from the value of the radial distri-
bution function and the derivative of the expression for direct correlation function
at the closest approach distance. The use of this approximation on the right hand
side of Eq. (8) is justified by the narrowness of the integration interval; on the left
hand side then by the properties of the factor exp [ — pufj(r)] of ¥;;.

On substituting from Eq. (20) into (8) the parameters ¢;; = dy;o;; (where oy, is the
characteristic length in the pair potential of a given component of the studied systems)
can be easily determined from

1
AU < R - A+ L Bl - H0Yo* — eil) =0, (21)
it
where for I{}’ we have

ryg*/dy
Iy = J exp [—Buf(n)] tdt, k=23 (22)
]

The approximate Eq. (20) may be used to determine the second integrals in Eq. (18)
and the integrals in Eq. (19). If

rigtfdyy *
JP = J ud(2) 2 dz, (23)
then

F Fb  2mn ®
NET m"‘ T gj:xixjd?js” {L Gif(s) Uis) ds — [4087 + BijJ(isa)]} +4,
(24)
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where

_ 2mn 3 kTN 1 @ _ U
4=="r i;jxixjdusij (1 + ;) E{Au[l 30fifen)® +

ij ij

oL i e ) @

ij

Comparing the expression in the outmost parentheses of Eq. (25) with Eq. (22)
we find that if o;; = g5; and ¢; = g;;, 4 vanishes; for systems whose components
do not differ appreciably in pair potentlals A is very small.

Expression (24) for the configuration free energy of the studied system is relatively
simple. Differentiating with respect to T'or V'to determine the internal energy or pres-
sure, however, one has to take into account the dependence of the parameters c;;
(or dy;) on temperature and density. For the compressibility factor we can then find

hs 2 0
e e et {00 ) 9~ (A + B} -
V]

NKT NKT kT4

Z xiX; d'Js‘JV {J 'J(s) UU s) ds — [Au‘I(Z) + BIJJEJS) }
e

(o)) v o

while for the free energy we get

21m
kT i

v _ h‘_”zxxd HwG"()U {s)ds = [4iJ? + By J<3>]} -

NKT kT ¥
OF|NKTY [dcy; a4
-T L) _ 72, 27
Z( ac; )(6T> T 7)

RESULTS AND DISCUSSION

The proposed equations were used to calculate the excess thermodynamic functions
at constant temperature and pressure P — 0 of binary mixtures of the components
whose molecules interact according to the Lennard—Jones 12— 6 potential

u;(r) = 4e[(00fr)"? — (o3/r)°], (28)
assuming the Berthelot-Lorentz rule for determining the crossed characteristic para-
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meters, i.e.
ey = (), oy = (o3 + ay))f2. (29)

The expressions, found for the Percus—Yevick approximation by Lebowitz*® and
rearranged by Mansoori and Canfield” to the form

Gyi(s) = s{H — Ly(s) exp [s[u]}/12 y, D(s) , (30)
G,a(s) = s{H — Ly(si) exp [su]}/12y, D(sp), (30

Grals) = v¥s? exp [5] {[% (2 = ») (i - l>v - (1 + g)} i+ 25)}/0(@.
‘ (32)

were used for the Laplace transform of z g%(z). Some quantities appearing in Eqs
(30)—(32) are given as follows

y; = mNdf6V, i=1,2 (334)
Y1z = X, %, Nd3, 3V, (33p)
1= dyfdy,, (34a)

1 -1
v=dyldys = 2(1 + _) ) (34b)

143
E=y+ Yy, (35)
H =36y, y,u(1 — p)?, (36)
Li(t) = 12y, 4,2* + [12p,0°(1 + 28) — H]t + H, (37)
Li(1) = 127,458 + [12)11(1 L2 - lH]t +H, (38)
"

S(t) = H + Ayt — 18(y; + pyp)* 2 = 6(y, + py,) (1 — &) & — (1 — &2 1%,

(39)

D(t) = H — Ly(t) exp [¢] — Ly(2) exp [t/p] + S(t)exp [((1 + 1/w)],  (40)
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oerf( oY) e

Ay = [(1 + g) + 35 (u — 1)], (#2)
As = 12(y, + pPy,) (1 +28) — H (1 + 1). (43)
u
Egs (30)—(32) together with
Uiy(s) = 4[ei2s™0[10! — c7;5s*/41], (44)

permit the first integrals in Eq. (24) to be determined by numerical integration.

The compressibility factor of a mixture of hard spheres, P"*V/NkT, was computed
from!4

PRVINET = (1 = &)1 + 36,6, 61 — &7 + (3 — &) &J&(1 — & . (45)

For the difference of the free energy of a mixture of hard spheres and that of an ideal
gas mixture of the same composition, temperature and volume it follows

FINET = (1 = &J6E) In[V](V — &) + (& + 3&,E:8)[EE1 — &) +

+ 851~ 97, (46)
where
& =N Yxidl,[6V (47a)
and l
E=¢;. (4717)

The values of the radial distribution function g;(1) were used together with the
derivative (with respect to the distance) of the Percus Yevick-relation for the direct
correlation function'® to determine A;; and B;;

V() = Aij + By = (1 — &) + 3&R,2(1 — & + &RE2(1 — €, (48)

Yis(1) = By; = by; + 3¢;;RY, (49)
where
Rij = 2ddy;f(dis + dy) (50)
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e = e(di + dy)2, ¢
e = &f2(1 — &7 + 36,51 — & + 96321 - &)*; (52)
For b;; we then have
biy = —6[y1gti(1) + duya(e + 1) 912(1)] (53a)
by = —6[yzg§2(l) + i 71+ 1fp)> 952(1)], (53b)
bis = =6 va0u () + w0 0120, (539
g11(1) = {(1 + &2) + 3pae — D2Y(1 - &, (54a)
g22(1) = {(1 + &[2) + 3p,(tfn = DRY(L - &2, (54b)
912(1) = [daagii(1) + dy1922(1)])2d,, - (54¢)

For one-component system (d = d;; and y = y, + y,) Eqs (48) and (49) simplify
to (compare cit.*?) the following relations

A=(1+4y+ 901 -y, (53)
i B=—9y(1 + pf2(1 - y)*, (56)

used to determine the properties of pure components.

In the calculation of the excess thermodynamic functions we determined first the
parameter ¢;; and the volume V; from Eqs (55) and (56) for a given temperature
and pressure P — 0. Having found the volumes and the diameter of the representative
hard spheres d;; = ¢;;0;; the free and the internal energy of pure components were
computed.

In the calculation of the thermodynamic function for mixtures we used the above
values of ¢;; for pure components as it turned out that the change of ¢;; corresponding
to the change of the density from a pure component to the mixture for examined
systems was negligible and the computer costs were considerably reduced. The mixed
parameter ¢, , was determined from

iz = (dig + dag)(o11 + 022) (57)
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following from combining Eqs (19) and (29). From these parameters the volume
of the mixture, V,, at a given temperature and pressure P — 0 was determined in an
jterative manner. For the found volume V, we then determined the values of the free
energy and the Helmholtz function of the mixture under the given conditions as well
as the excess free enthalpy, AGE, the excess enthalpy, AHE, and the excess volume,
AVE

Table I gives a comparison of the excess functions for the argon-krypton system
at T= 115-8°K (P — 0) with the Monte Carlo data, found by McDonald*® by simulat-
ing in NPT ensemble (designated in the table as MC(a)), with the data of Singers'®,
obtained by simultation in NVT ensemble (designated as MC(b)), and with the values
from the Barker-Henderson first order theory® and the variational approach of Man-

TaBLE I
A Comparison of the Excess Functions AGE, AHE and AVE for the Argon-Krypton System
at T= 1158 K and P— 0 with the Monte Carlo (MC) Data, Results of the Barker-Henderson
Theory (BH) and those of the Variational Approach of Mansoori and Canfield (V): (&4, /k =
= 1198 K, ¢5,/k = 1670K, 6,; = 3:405 A, 6,, = 3:633 &)

x,  Thiswork  BH v MC@) MC() Exp.”'®
AGE, J /mol
025 21 - - 33 - —
0-398 27 - 43 44 - 80
05 28 28 47 46 45 84
0-602 27 - 46 45 - 82
075 21 - - 36 - -
AHE, J/mol
025 -3 — — —16 — _
0-398 -7 - - —24 - —
05 —10 —54  —335  —29 —18 83
0-602 —12 - - —30 - -
075 —12 — — —22 — —
AVE, ml/mol
025 —0-29 - - —0-44 - -
0-398 —0-41 - —066 —0-61 - —0-46
05 —0-46 —072  —073 —069 —060 —0-52
0-602 —0:48 - —072  —069 - —053
075 —0-42 - - —0-59 - -
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Tasre 1T
A Comparison of the Thermodynamic Properties of Argon, Krypton and their Equimolar
Mixture at 7= 115-8 K and P— 0 with the Monte Carlo Data (MC), the Results of the Varia-~
tional Approach of Mansoori and Canfield (V) and the Experimental Results

¥, ml/mol 7,16 —H, J/mol 7.16
System this work v MC Exp. this work v MC Exp.
Ar 32-18 3477 33-52 3347 5069 4706 4945 4937
Kr 3372 35-16 34-09 3422 8 508 8211 8523 8211
Ar + Kr 3248 3423 3301 33-35 6798 6489 6811 —
TasLe I

A Comparison of Computed Excess Functions AGE, AHE and AVE for Equimolar Mixture
of Argon and Xenon at T'= 1614 K and P—> 0 with the Monte Carlo (MC) Data and the Ex-
perimental Data (¢1,/k = 167-0 K, &;,/k = 2299 K, 0, = 3:633 A,, = 4974 &)

Function This work MC Exp‘7’16
AGE, J/mol 122 282 1154
AHE, J/mol —39-4 —523 —
AVE, ml/mol — 047  — 070 —062

soori and Canfield”''®. From comparison it follows that the results of the excess
volume obtained in this work are somewhat lower than those of Barker and Hender-
son and the results of the variational approach. They are, however, in good agree-
ment with the data of Singers; the agreement with the data of McDonald is some-
what worse. Lower values of AVE cause probably the values of other two excess
functions to decrease. The values of the excess free enthalpy, similarly as BH data,
are lower than those of the Monte Carlo method. The variational approach (using
the variation of F to determine the representative hard spheres) gives the best agree-
ment for AGE. The computed excess enthalpies are small in absolute values and in good
agreement with MC(b) data. The deviations of the Barker-Henderson values, as well
as those following from the variational approach, are considerable. Summarily,
the discussed method and the variational approach, predict the excess functions with
approximately same deviation; BH method is somewhat worse. Comparing, however,
the total functions V, H instead of the excess values, as has been done in Table II
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for argon, krypton and their equimolar mixture, the proposed method provides much
better prediction than the variational approach.

Table III shows a comparison of the excess functions for an equimolar mixture
of krypton and xenon at T = 161-4 K and P — 0 with the Monte Carlo data'S.
The agreement can be considered as very good.

Tables I—III summarize also the experimental values of the function considered.
A comparison of the computed values with the experimental data indicates also the
proposed method to be superior over the variational approach and the Barker-Hen-
derson method. This comparison is of course only a guide owing to the used characte-
ristic parameters of the model potential.

It may be concluded that the perturbation expansion of the first order utilizing
WCA choice of the reference system and WCA approximation of the radial distribu-
tion function represents a useful tool for description of multiccmponent systems.
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Note added in proof: Recently, Barker and Henderson [Mol. Phys. 25, 883 (1973)] published
the recalculated data of the excess thermodynamic functions for the system argon-krypton at
115-8 K which are in very good agreement with the ,,pseudoexperimental data.
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