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A first order perturbation expansion is proposed using the Weeks-Chandler-Andersen choice 
of the reference system for solutions of non-electrolytes formed by molecules with central type 
of the interaction potential (involving soft repulsions). The Percus-Yevick approximation for 
a mixture of additive hard spheres is used in the calculation of the functions of the reference 
system. The method is applied to determine the excess thermodynamic functions ~GE, ~HE and 
~ VE of the argon-krypton system at T= 115·8 K and the krypton-xenon system at T= 161'4 K. 
The excess functiQns are compared with the Monte Carlo data and those following from the theory 
of Barker and Henderson and the variational approach due to Mansoori and Canfield . 

Recently, the perturbation methods have been applied successfully to determine the state and 
thermodynamic behaviour of systems of non-electrolytes. A number of perturbation methods 
have been proposed (e.g . ref. 1 ,2) of which for pure substances in particular proved useful the 
approach of Barker and Henderson 3

, the Weeks-Chandler-Anderson4 (WCA) method and the 
Verlet-Weiss method; the last being a modification of WCA method . Of these methods only the 
Barker-Henderson6 (BH) method and the Mansoori-Canfield7 (V) variational approach were 
extended to solutions. The Mansoori-Canfield method differs from BH in the way of determining 
the representative hard spheres and some mathematical details. In addition to the exact and 
versatile theories several approximative methods (e.g. the Snider-Herrington8 method) as well 
as those suitable for a certain type of intermolecular pair potential (Boublik-Benson 9) have been 
proposed. These methods serve for their relative simplicity to estimate the thermodynamic func­
tions of mixtures without, however, enabling exact study of multicomponent system with an ar­
bitrary type of the intermolecular potential. WCA approach will be now extended to multi­
component systems since, as has been shown by Verlet and Weiss, WCA choice of the reference 
system, together with WCA approximation of the radial distribution function leads for the Len­
nard-Jones types of pair potential (involving soft repulsions) to so far the best agreement of the 
computed values with the pseudo-experimental Monte Carlo results. 

THEORETICAL 

A basic relation in statistico-thermodynamic description of the behaviour of mixtures 
by perturbation methods is the expression for the Helmholtz function. If the studied 
system contains N A molecules type of A, Nn molecules of type B etc., and a tdal 
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A First Order Perturbation Theory of Solutions 3695 

of N molecules (N = NA + NB + ... ) in a volume Vat a temperature T, the first 
order perturbation expansion for the mixture takes the form 

(1) 

where F and FO stand for the configuration free energy of the studied and the re­
ference system respectively. k is the Boltzmann constant, f3 = (kTtl, n the number 
density (n = N/V), Xi = NdN the mole fraction of the component i. wij(r) and g?lr) 
denote the perturbation interaction potential and the radial distribution function 
of the reference system respectively both for a pair of molecules of i and j type with the 
center-to-center distance equalling r. If uil~) is the pair potential of the studied 
system and u?lr) and wJr) are the reference and the perturbation potentials res­
pectively, then with WCA choice we have4

, 5 

r~ in the last equation stands for the intermolecular distance in the minimum of the 
potential curve where uij(r~) = -eij' For a reference system with a potential given 
by Eq. (2a) the course of the radial distribution function is not known, and, con­
sequently, g~(r) has to be expressed in an approximative manner. For pure substance~ 
it has proved useful to put gO(r) = exp [- f3uO(r)] yhs(r). We shall therefore adopt 

for mixtures analogously the relation 

(3) 

Function Yilr) == y~j(r) is given by 

Yilr) = exp [f3ufj(r)] g~j(r) , (4) 

where the superscript hs indicates mixtures of hard spheres of diameter dij of the 
same composition {Xi} as the studied and the reference system. Similarly as in the 
c<..se of one-component system10 one can write for the free energy of the reference 
mUlticomponent system the functional Taylor expansion in terms 

of q>ilr) 

q>Jr) = exp [ - f3u?lr)] , (5) 

about the potential of hard spheres, which for the i - j type pair we shall designate 
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3696 Boublik: 

by <pri(r). With the aid of Eq. (3) one can derive for binary mixtures the relation 

pO phs 1 2 f ( ) [ 0 ( ) hs ( )] 
VkT = VkT - 2 nA YAA r <PAA r - <PAA r dr-

- nAnB f YAB(r) [<p~B(r) -. <p~~(r)] dr - ~ n~ f YBB(r) [(p~B(r) - <p~~(r)] dr + ... , 

(6) 

where the contribution of all terms higher than the first order is very small. If the 
thermodynamic functions for mixtures of "non-additive hard spheres" were known 
with sufficient accuracy, all three integrals in the last equation could be put equal 
zero. The free energy of the reference system would then equal - spare for higher 
order terms - the free energy of the mixture of hard spheres of the diameter given 
by the following equation 

f Yiir) [<p~(r) - <prI(r)] dr = 0 (7) 

for all possible types of pairs. Since, however, only tlie data on "additive hard spheres" 
are at our disposal, Eq. (7) can be used to determine only dii for which after some 
arrangement we get 

(8) 

The diameter of representative hard spheres of i =1= j pairs is given by the arithmetic 
average 

(9) 

In view of the definition of the reference system and the approximation in Eq. (3) 
it is convenient to split the integration interval in Eq. (1) into two parts: (0 - r~) 
and (r~ - (0) 

- = - + - "x·x. -ej.r;.(r) exp [-/3u?(r)] r2 dr + p pO 2nn {f rlj
' 

NkT NkT kT f.j I J J 0 IJ IJ 

(10) 

The second integral may be expressed with the aid of the Laplace transforms of func-
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(11) 

and the inverse Laplace transforms offunctions z w~(z) (where w~(r) = wij(r)j8ij) 

(12) 

After substitution we get 

(13) 

This equation can be arranged using eq. (Y) and (14) 

U?t(z) = U~(Z)j8i j = u~(z) + 1 , (14) 
to give 

- = - + -" x·x·d·.8 ·· G .. (S) U .. (s)ds - Uj • (Z) 1';.(z) z dz + 6, F FO 2nn 3 {f OO fru*/dl
) 0* 2} 

NkT NkT kT f.j 1 ) 1) 1) ° I) 1) 1 ) ) 

(15) 

where 

The free energy FO of the reference system can be expressed from Eq. (6) using 

expressions for a mixture of hard spheres 

(17) 

Substituting the last expression into Eq. (15) we get 

(18) 
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where 

(19) 

The function Yilr) for a system of hard spheres is a monotonically decreasing function 
on the interval (0 - r~) with a maximum (a finite value) in the proximity of r = 0 
(refY). To calculate the integrals in Eq. (8) one can therefore approximate Yi j 

by a first-order expansion in z at z = 1, i.e. we can write12 

(20) 

where the coefficients Aij and Bij are determined from .the value of the radial distri­
bution function and the derivative of the expression for direct correlation function 
at the closest approach distance. The use of this approximation on the right hand 
side of Eq. (8) is justified by the narrowness of the integration interval; on the left 
hand side then by the properties of the factor exp [- pu?lr)] of Yi j . 

On substituting from Eq. (20) into (8) the parameters Cii = diduii (where U ii is the 
characteristic length in the pair potential of a given component of the studied systems) 
can be easily determined from 

where for fIr) we have 

(22) 

The approximate Eq. (20) may be used to determine the second integrals in Eq. (18) 
and the integrals in Eq. (19). If 

(k) 0* k f
rIJ*'d IJ 

J jj = 1 Ujj (Z) z dz, (23) 

then 
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A First Order Perturbation Theory of Solutions 3699 

where 

(25) 

Comparing the expression in the outmost parentheses of Eq. (25) with Eq. (22) 
we find that if (Jii = (ijj and Sii = Sjj' L1 vanishes; for systems whose components 
do not differ appreciably in pair potentials L1 is very small. 

Expression (24) for the configuration free energy of the studied system is relatively 
simple. Differentiating with respect to Tor Vto determine the internal energy or pres­
sure, however, one has to take into account the dependence of the parameters Cjj 

(or d ii) on temperature and density. For the compressibility factor we can then find 

-- - -- + - x·x·d··s·· G· · s U·· s ds - A..J.. + B··J· . -PV _ phsV 2nn I 3 {fOCJ ( ) ( ) [(2) (3)]} 
NkT NkT kTi,j 1) 1) 1) 0 1) 1) 1) 1) 1) 1) 

_ vI (OF/NkT) (OCii) 

i OCii oV 

while for the free energy we get 

V~, 
oV 

_ TI (OF/NkT) ( OC ii
) - T~. 

i OCii oT oT 

RESULTS AND DISCUSSION 

(26) 

(27) 

The proposed equations were used to calculate the excess thermodynamic functions 
at constant temperature and pressure P --+ 0 of binary mixtures of the components 
whose molecules interact according to the Lennard-Jones 12 - 6 potential 

(28) 

assuming the Berthelot-Lorentz rule for determining the crossed characteristic para-
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meters, i.e. 

(29) 

The expressions, found for the Percus-Yevick approximation by Lebowitz13 and 
rearranged by Mansoori and Canfield? to the form 

(30) 

(31) 

Gds) = V4
S

2 
exp [s] {[HY2 - Yl) (~- 1)V - (1 + DJ s - (1 + 2e)}/D(VS). 

(32) 

were used for the Laplace transform of z g?j(z). Some quantities appearing in Eqs 
(30) -(32) are given as follows 

Yi = rcx iNdM6V, i = 1,2 

( 1)-1 
V = dll /d 12 = 2 1 + ~ , 

e = )11 + )12, 

(33a) 

(33b) 

(34a) 

(34b) 

(35) 

(36) 

(37) 

(38) 

S(t) = H + A3t - 18(Y1 + J1Y2)2 t2 - 6(Yt + J1Y2) (1 - e) t3 - (1 - e)2 t4, 

(39) 

D(t) = H - L1(t) exp [t] - Lit) exp [t/J1] + s(t) exp [t(l + 1/J1)] , (40) 
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A First Order Perturbation Theory of Solutions 3701 

Eqs (30)-(32) together with 

(44) 

permit the first integrals in Eq. (24) to be determined by numerical integration. 
The compressibility factor of a mixture of hard spheres, phSY/NkT, was computed 
from14 

For the difference of the free energy of a mixture of hard spheres and that of an ideal 
gas mixture of the same composition, temperature and volume it follows 

where 

and 

Fhs/NkT = (1- ~V~oe) In [V/(V - ~)J + (~~ + 3~1~2~)/~o~(1 - ~) + 

+ ~V~o(1 - ~)2 , 

~j = nN 2,xidt!6V 
i 

~ = ~3' 

(46) 

(47a) 

(47b) 

The values of the radial distribution function gij(1) were used together with the 
derivative (with respect to the distance) of the Percus Yevick-relation for the direct 
correlation function 13 to determine Aij and Bij 

(49) 

where 

(50) 
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(51) 

(52) 

For bij we then have 

gl1(1) = {(I + ~j2) + 3yiJl - l)j2}j(1 - ~)2 , (54a) 

. g22(1) = {(I + ~j2) + 3Yl(ljJl - l)j2}j(1 - ~y , (54b) 

For one-component system (d = dii and y = Yl + Y2) Eqs (48) and (49) simplify 
to (compare cit. 12) the following relations 

B = - 9y(1 + y)j2(1 _ y)3 , 

used to determine the properties of pure components. 

(55) 

(56) 

In the calculation of the excess thermodynamic functions we determined first the 
parameter Cii and the volume Vi from Eqs (55) and (56) for a given temperature 
and pressure P -7 o. Having found the volumes and the diameter of the representative 
hard spheres dii = Cii(Tii the free and the internal energy of pure components were 
computed. 

In the calculation of the thermodynamic function for mixtures we used the above 
values of Cii for pure components as it turned out that the change of Cii corresponding 
to the change of the density from a pure component to the mixture for examined 
systems was negligible and the computer costs were considerably reduced. The mixed 
parameter C 12 was determined from 

(57) 
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following from combining Eqs (19) and (29). From these parameters the volume 
of the mixture, 11;., at a given temperature and pressure P -* 0 was determined in an 
iterative manner. For the found volume Vs we then determined the values of the free 
energy and the Helmholtz function of the mixture under the given conditions as well 
as the excess free enthalpy, ~GE, the excess enthalpy, ~HE, and the excess volume, 
~VE. 

Table I gives a comparison of the excess functions for the argon-krypton system 
at T = 115·goK (P -* 0) with the Monte Carlo data, found by McDonald15 by simulat­
ing in NPT ensemble (designated in the table as MC(a)), with the data of Singers16, 

obtained by simultation in NVT ensemble (designated as MC(b)), and with the values 
from the Barker-Henderson first order theory6 and the variational approach of Man-

TABLE I 
A Comparison of the Excess Functions ilGE, ilHE and il VE for the Argon-Krypton System 
at T = 115-8 K and p -,;> 0 with the Monte Carlo (MC) Data, Results of the Barker-Henderson 
Theory (BH) and those of the Variational Approach of Mansoori and Canfield (V): (ellik = 
= 119-8 K, e221k = 167-0 K, CTll = 3-405 A, CT22 = 3·633 A) 

Xl This work BH V MC(a) MC(b) Exp_7, 16 

ilGE, J/ mol 

0-25 21 33 
0-398 27 43 44 80 
0-5 28 28 47 46 45 84 
0-602 27 46 45 82 
0-75 21 36 

ilHE, J/mol 

0-25 - 3 -16 
0-398 - 7 -24 
0-5 -10 - 54 -33-5 -29 -18 83 
0-602 -12 -30 
0-75 -12 -22 

ilVE, mllmol 

0-25 -0-29 -0-44 
0-398 -0-41 -0-66 -0-61 -0-46 
0-5 -0-46 -0-72 -0-73 -0-69 -0-60 -0-52 
0-602 -0-48 - 0-72 -0-69 -0-53 
0-75 -0-42 -0-59 
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TABLE II 

A Comparison of the Thermodynamic Properties of Argon, Krypton and their Equimolar 
Mixture at T = 115·8 K and P-+ 0 with the Monte Carlo Data (Me), the Results of the Varia­
tional Approach of Mansoori and Canfield (V) and the Experimental Results 

System 
V,ml/mol 

V MC Exp.7 ,16 - H,J/ mol 
V MC EXp.7,16 

this work this work 

Ar 32·18 34·77 33·52 33-47 5069 4706 4945 4937 
Kr 33 ·72 35·16 34·09 34·22 8508 8211 8523 8211 
Ar + Kr 32·48 34·23 33·01 33·35 6798 6489 6811 

TABLE III 

A Comparison of Computed Excess Functions I1GE, I1HE and 11 VE for Equimolar Mixture 
of Argon and Xenon at T= 161·4K and P-+O with the Monte Carlo (Me) Data and the Ex­
perimental Data (G~l/k = 167·0 K, G221k = 229·9 K , 0"11 = 3·633 A22 = 4·974 A) 

Function This work MC Exp.7,16 

I1GE, J / mol 12·2 28·2 115-4 
I1HE,J ! mol -39·4 -52·3 
I1VE, mll mol - 0·47 - 0·70 -0·62 

soori and Canfield? ,16. From comparison it follows that the results of the excess 
volume obtained in this work are somewhat lower than those of Barker and Hender­
son and the results of the variational approach. They are, however, in good agree­
ment with the data of Singers; the agreement with the data of McDonald is some­
what worse. Lower values of i1 VE cause probably the values of other two excess 
functions to decrease. The values of the excess free enthalpy, similarly as BH data, 
are lower than those of the Monte Carlo method. The variational approach (using 
the variation of F to determine the representative hard spheres) gives the best agree­
ment for i1GE

• The computed excess enthalpies are small in absolute values and in good 
agreement with MC(b) data. The deviations of the Barker-Henderson values, as well 
as those following from the variational approach, are considerable. Summarily, 
the discussed method and the variational approach, predict the excess functions with 
approximately same deviation; BH method is somewhat worse. Comparing, however, 
the total functions V, H instead of the excess values, as has been done in Table II 
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for argon, krypton and their equimolar mixture, the proposed method provides much 
better prediction than the variational approach. 

Table III shows a comparison of the excess functions for an equimolar mixture 
of krypton and xenon at T = 161·4 K and P -t 0 with the Monte Carlo data16• 

The agreement can be considered as very good. 
Tables I-III summarize also the experimental values of the function considered. 

A comparison of the computed values with the experimental data indicates also the 
proposed method to be superior over the variational approach and the Barker-Hen­
derson method. This comparison is of course only a guide owing to the used characte­
ristic parameters of the model potential. 

It may be concluded that the perturbation expansion of the first order utilizing 
WCA choice of the reference system and WCA approximation of the radial distribu­
tion function represents a useful tool for description ~f multiccmponent systems. 
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Note added in proof' Recently, Barker and Henderson [Mol. Phys. 25, 883 (1973)] published 
the recakulated data of the excess thermodynamic functions for the system argon-krypton at 
115'8 K which are in very good agreement with the "pseudoexperimental" data. 
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